Для балки Эйлера–Бернулли и тонкого нерастяжимого полукольца показано, что их функция Грина для нормальных сил и смещений может равняться нулю при наличии диссипативных потерь. Балка и полукольцо рассмотрены в двух вариантах: со свободным креплением и подвижной заделкой на концах. Решения существуют в широких полосах частот. Для полукольца с подвижной заделкой среди решений есть такие, для которых производная функции Грина по частоте близка к нулю при независящем от частоты тангенсе потерь. Виброизолятор в виде замкнутого кольца с четырьмя опорами, распложенными в точках, соответствующих одному из таких решений, будет обладать как теоретически бесконечной виброизоляцией на одной частоте, так и большой виброизоляцией в широкой полосе соседних частот.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation