ОФНАкустический журнал Acoustical Physics

  • ISSN (Print) 0320-7919
  • ISSN (Online) 3034-5006

Исследование спектральных характеристик реверберации в мелком море при разнесении в пространстве точек излучения и приема сигнала

Код статьи
S30345006S0320791925010125-1
DOI
10.7868/S3034500625010125
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 71 / Номер выпуска 1
Страницы
118-128
Аннотация
Исследованы характеристики реверберационной помехи, возникающей в морской среде при излучении длинных тональных импульсов в бистатической схеме акустического зондирования. При зондировании тональными импульсами обеспечивается необходимое разрешение для исследования как доплеровского спектра, так и временного развития реверберационного сигнала. Представленная теоретическая модель применима и к прямым задачам — прогноз характеристик реверберации при заданном состоянии моря, и к обратным задачам — определение свойств морской среды, главным образом ее приповерхностного слоя, по результатам акустического зондирования. Модель основана на представлении рассеянного сигнала в виде суперпозиции отражений от распределенных по глубине рассеивателей, движущихся по круговым траекториям со скоростями, определяемыми максимальной амплитудой и периодом ветровых волн. Статья является продолжением цикла работ авторов и расширяет применимость полученных ранее результатов на случай существенно разнесенных источников и приемников звука. Результаты моделирования находят подтверждение в экспериментальных данных по таким параметрам, как ширина доплеровского спектра и закон спадания интенсивности реверберации во времени.
Ключевые слова
бистатическая реверберация в море сила рассеяния поверхностное рассеяние рассеяние на пузырьках спектр реверберации
Дата публикации
08.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
34

Библиография

  1. 1. Луньков А.А. Интерференционная структура низкочастотных реверберационных сигналов в мелком море // Акуст. журн. 2015. Т. 61. № 5. С. 596–604.
  2. 2. Hartstra I., Colin M., Prior M. Active sonar performance modelling for Doppler-sensitive pulses // Proc. Meetings on Acoustics. 2021. V. 44. Article No. 022001. P. 1–12.
  3. 3. Ellis D.D. Modeling and Analysis of Target Echo and Clutter in Range-Dependent Bistatic Environments: FY13 Annual Report for ONR // Defence Research Reports, Canada, 2014. Doc. No.: DRDC Atlantic ECR 2013-154. URL: http://cradpdf.drdc-rddc.gc.ca/PDFS/unc155/p539342_A1b.pdf
  4. 4. Салин Б.М., Кемарская О.Н., Молчанов П.А., Салин М.Б. Исследование механизма уширения спектра низко-частотного реверберационного сигнала при рассеянии звука на приповерхностных неоднородностях в условиях интенсивного ветрового волнения // Акуст. журн. 2017. Т. 63. № 3. С. 314–322.
  5. 5. Салин Б.М., Салин М.Б. Механизмы формирования спектральных характеристик низкочастотной реверберации и прогнозные оценки // Акуст. журн. 2018. Т. 64. № 2. С. 197–206.
  6. 6. Салин М.Б., Ермошкин А.В., Разумов Д.Д., Салин Б.М. Модели формирования доплеровского спектра поверхностной реверберации для звуковых волн метрового диапазона // Акуст. журн. 2023. Т. 69. № 5. С. 595–607.
  7. 7. Андреева И.Б. Сравнительные оценки поверхностного, донного и объемного рассеяния звука в океане // Акуст. журн. 1995. Т. 41. № 5. С. 699–705.
  8. 8. Акуличев В.А., Буланов В.А. Акустические исследования мелкомасштабных неоднородностей в морской среде. Владивосток: ТОИ ДВО РАН, 2017. С. 182–188.
  9. 9. Салин М.Б., Потапов О.А., Стуленков А.В., Разумов Д.Д. Исследование распределения реверберационной помехи по частотам Доплера в бистатическом эксперименте в глубоком море // Акуст. журн. 2019. Т. 65. № 1. С. 34–41.
  10. 10. Ermoshkin A.V., Kosteev D.A., Ponomarenko A.A., Razumov D.A., Salin M.B. Surface Waves Prediction Based on Long-Range Acoustic Backscattering in a Mid-Frequency Range // J. Mar. Sci. Eng. 2022. V. 10. No. 6. Article No. 722. P. 1–18. https://doi.org/10.3390/jmse10060722
  11. 11. Бурдуковская В.Г., Хилько А.И., Коваленко В.В., Хилько А.А. Анализ влияния длинных поверхностных волн на формирование рассеянного ветровым волнением акустического поля в океанических волноводах // Акуст. журн. 2019. Т. 65. № 6. С. 763–773.
  12. 12. Андреев М.Ю. Зависимость интенсивности дальней бистатической реверберации от размера базы // Акуст. журн. 1993. Т. 39. № 4. С. 751–754.
  13. 13. Андреева И.Б., Волкова А.В., Галыбин Н.Н. Обратное рассеяние звука морской поверхностью при малых углах скольжения // Акуст. журн. 1980. Т. 26. № 4. С. 481–487.
  14. 14. Григорьев В.А., Кузькин В.М., Петников В.Г. Низкочастотная донная реверберация в мелководных районах океана // Акуст. журн. 2004. Т. 50. №1. С. 44–54.
  15. 15. Janssen P. The interaction of ocean waves and wind. Cambridge University Press, 2004. P. 43-47.
  16. 16. Ocean-Wave Spectra // WikiWaves [website] URL: https://wikiwaves.org/Ocean-Wave_Spectra , access date: 02-08-2023.
  17. 17. Лебедев А.В., Салин Б.М. Исследование эффектов локализации областей рассеяния звука на ветровом волнении // Акуст. журн. 2004. Т. 50. № 6. С. 813–826.
  18. 18. Салин Б.М., Салин М.Б., Spindel R.C. Расчет спектра реверберацонной помехи для доплеровской схемы локации // Акуст. журн. 2012. Т.58. № 2. С. 258–266.
  19. 19. Jenserud T., Ivansson S. Measurements and Modeling of Effects of Out-of-Plane Reverberation on the Power Delay Profile for Underwater Acoustic Channels // IEEE J. Oceanic Engineering. 2015. V. 40. No. 4. P. 807–821.
  20. 20. Григорьев В.А., Луньков А.А., Петников В.Г. Затухание звука в мелководных акваториях с газонасыщенным дном // Акуст. журн. 2015. Т. 61. №1. С. 90–100.
  21. 21. Шулейкин В.В. Физика моря. М.: Наука, 1968. 1090 с.
  22. 22. Пери А.Х., Уокер Дж.М. Система океан-атмосфера. Л.: Гидрометеоиздат, 1979.
  23. 23. Абузяров З.К. Морское волнение и его прогнозирование. Л.: Гидрометеоиздат, 1981. 166 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека