- Код статьи
- S30345006S0320791925040095-1
- DOI
- 10.7868/S3034500625040095
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 71 / Номер выпуска 4
- Страницы
- 598-608
- Аннотация
- Решение прикладных задач сейсмической разведки и ультразвуковой дефектоскопии сопровождается применением компьютерного моделирования. Это ставит перед учеными задачу по разработке новых модификаций численных методов, позволяющих увеличить точность расчетов, минимизируя при этом затраты вычислительных ресурсов. В отличие от численных методов на неструктурированных расчетных сетках, использование Химерных (или наложенных, или адаптивных) расчетных сеток позволяет также описывать границы и контактные границы произвольной формы, но при этом затрачивать меньше оперативной памяти и времени на проведение вычислений. Это особенно важно в связи с активным использованием нейронных сетей для решения обратных задач, так как при генерации обучающих выборок важна как точность моделирования, так и скорость вычислений и количество затрачиваемой оперативной памяти. В работе рассматриваются и сравниваются между собой различные модификации сеточно-характеристического метода на Химерных расчетных сетках. Приведены примеры тестовых расчетов.
- Ключевые слова
- компьютерное моделирование упругое волновое уравнение сеточно-характеристический метод сейсмическая разведка ультразвуковая дефектоскопия железнодорожные рельсы наложенные сетки адаптивные сетки Химерные сетки patch-сетки
- Дата публикации
- 08.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 15
Библиография
- 1. Micucci M., Iula A. Recent advances in machine learning applied to ultrasound imaging // Electronics. 2022. V. 11. № 11. Art. № 1800.
- 2. Wu X., Ma J., Si X., Bi Z., Yang J., Gao H., Xie D., Guo Z., Zhang J. Sensing prior constraints in deep neural networks for solving exploration geophysical problems // Proceedings of the National Academy of Sciences. 2023. V. 120. № 23. Art. № e2219573120.
- 3. Golubev V., Anisimov M. Application of convolutional networks for localization and prediction of scalar parameters of fractured geological inclusion // International Journal of Applied Mechanics. 2024. V. 16. № 5. Art. № 2450064.
- 4. Tsukanov A.A., Gorbatikov A.V. Influence of the contribution of body waves to the result of the microseismic sounding method // Acoustical Physics. 2020. V. 66. P. 191–197.
- 5. Favorskaya A., Petrov I. A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments // Theoretical and Applied Mechanics Letters. 2020. V. 10. № 5. P. 307–314.
- 6. Eremin A.A., Glushkov E.V., Glushkova N.V., Lammering R. Localization of inhomogeneities in an elastic plate using the time reversal method // Acoustical Physics. 2017. V. 63. P. 562–569.
- 7. Presnov D.A., Sobisevich A.L., Shurup A.S. Determination of ice cover parameters using seismoacoustic noise // Acoustical Physics. 2023. V. 69. № 5. P. 725–737.
- 8. Zou Q., Huang J.P., Yong P., Li Z.C. 3D elastic waveform modeling with an optimized equivalent staggered-grid finite-difference method // Petroleum Science. 2020. V. 17. P. 967–989.
- 9. Bosma S., Hajibeygi H., Tene M., Tchelepi H.A. Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM) // Journal of Computational Physics. 2017. V. 351. P. 145–164.
- 10. Gulizzi V., Saye R. Modeling wave propagation in elastic solids via high-order accurate implicit-mesh discontinuous Galerkin methods // Computer Methods in Applied Mechanics and Engineering. 2022. V. 395. Art. № 114971.
- 11. Nanda N. Wave propagation analysis of laminated composite shell panels using a frequency domain spectral finite element model // Applied Mathematical Modelling. 2021. V. 89. P. 1025–1040.
- 12. Favorskaya A.V., Petrov I.B. Grid-characteristic method // Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications. Smart Innovation, Systems and Technologies. 2018. V. 90. P. 117–160.
- 13. Shevchenko A.V., Golubev V.I. Boundary and contact conditions of higher order of accuracy for grid-characteristic schemes in acoustic problems // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1760–1772.
- 14. Golubev V.I., Nikitin I.S., Mi X. Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media // Journal of Siberian Federal University. Mathematics and Physics. 2024. V. 17. № 1. P. 8–17.
- 15. Golubev V.I., Nikitin I.S. Refined schemes for computing the dynamics of elastoviscoplastic media // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1874–1885.
- 16. Golubev V., Nikitin I., Beklemysheva K. Model of fractured medium and nondestructive control of composite materials // Chinese Journal of Aeronautics. 2024. V. 37. № 2. P. 93–99.
- 17. Steger J.L., Benek J.A. On the use of composite grid schemes in computational aerodynamics // Computer Methods in Applied Mechanics and Engineering. 1987. V. 64. № 1–3, 301–320.
- 18. Khokhlov N., Favorskaya A., Stetsyuk V., Mitskovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // Journal of Computational Physics. 2021. V. 446. Art. № 110637.
- 19. Zang N., Zhang W., Chen X. An overset-grid finite-difference algorithm for simulating elastic wave propagation in media with complex free-surface topography // Geophysics. 2021. V. 86. № 4. P. T277–T292.
- 20. Muratov M.V., Petrov I.B., Sannikov A.V., Favorskaya A.V. Grid-characteristic method on unstructured tetrahedral meshes // Computational Mathematics and Mathematical Physics. 2014. V. 54. P. 837–847.
- 21. Favorskaya A.V., Petrov I.B. A study of high-order grid-characteristic methods on unstructured grids // Numerical Analysis and Applications. 2016. V. 9. P. 171–178.
- 22. Duan P., Gu B., Li Z., Li Q. An overset mesh-free finite-difference method for seismic modeling including surface topography // Geophysics. 2023. V. 88. № 5. P. T271–T288.
- 23. Qiu H., Sun Y.C., Fang C., Zhang W., Chen X. An overset-grid finite-difference algorithm for seismic wavefield propagations modelling in the polar coordinate system with a complex free-surface topography // Geophysical Journal International. 2024. V. 241. № 3. P. 1881–1895.
- 24. Kozhemyachenko A.A., Favorskaya A.V. Grid convergence analysis of grid-characteristic method on Chimera meshes in ultrasonic nondestructive testing of railroad rail // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 10. P. 1886–1903.
- 25. Pesnya E., Favorskaya A.V., Petrov I.B., Khokhlov N.I. Parallelization strategies for ultrasonic wave propagation in composite materials considering microstructural details // Supercomputing Frontiers and Innovations. 2024. V. 11 № 4. P. 66–77.
- 26. Favorskaya A.V., Khokhlov N.I., Golubev V.I., Shevchenko A.V. Boundary conforming Chimera meshes to account for surface topography and curved interfaces in geological media // Lobachevskii Journal of Mathematics. 2024. V. 45. № 1. P. 191–212.
- 27. Favorskaya A.V., Khokhlov N.I., Petrov I.B. Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape // Lobachevskii Journal of Mathematics. 2020. V. 41. P. 512–525.
- 28. Kholodov A.S., Kholodov Y.A. Monotonicity criteria for difference schemes designed for hyperbolic equations // Computational Mathematics and Mathematical Physics. 2006. V. 46. P. 1560–1588.
- 29. Khokhlov N.I., Favorskaya A., Furgailo V. Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures // Minerals. 2022. V. 12. № 12. Art. № 1597.
- 30. Peng L., Nianhua W., Chang X., Zhang L., Yadong W.U. An automatic isotropic/anisotropic hybrid grid generation technique for viscous flow simulations based on an artificial neural network // Chinese Journal of Aeronautics. 2022. V. 35. № 4. P. 102–117.
- 31. Sang K.H., Yin X.Y., Zhang F.C. Machine learning seismic reservoir prediction method based on virtual sample generation // Petroleum Science. 2021. V. 18. № 6. P. 1662–1674.